Near-Ideal Top-Gate Controllability of InGaZnO Thin-Film Transistors by Suppressing Interface Defects with an Ultrathin Atomic Layer Deposited Gate Insulator

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8666-8675. doi: 10.1021/acsami.2c20176. Epub 2023 Jan 29.

Abstract

An ultrathin atomic-layer-deposited (ALD) AlOx gate insulator (GI) was implemented for self-aligned top-gate (SATG) amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). Although the 4.0-nm thick AlOx exhibited ideal insulating properties, the interaction between ALD AlOx and predeposited a-IGZO caused a relatively defective interface, thus giving rise to hysteresis and bias stress instabilities. As analyzed using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and the Hall measurement, the chemical reaction between the ALD precursor and a-IGZO is revealed. This was effectively prevented by preoxidizing a-IGZO with nitrous oxide (N2O) plasma. With 4 nm-AlOx GI and low-defect interfaces, high performance and stability were simultaneously achieved on SATG a-IGZO TFTs, including a near-ideal record-low subthreshold swing of 60.8 mV/dec, a low operation voltage below 0.4 V, a moderate mobility of 13.3 cm2/V·s, a low off-current below 10-13 A, a large on/off ratio over 109, and negligible threshold-voltage shifts less than 0.04 V against various bias-temperature stresses. This work clarifies the vital interfacial reaction between top-gate high-k dielectrics and amorphous oxide semiconductors (AOSs) and further provides a feasible way to remove this obstacle to downscaling SATG AOS TFTs.

Keywords: N2O treatment; a-IGZO; atomic layer deposition (ALD); bias stability; interfacial reaction; low operation voltage; self-aligned top-gate (SATG); ultrathin AlOx.