Stimuli-Responsive Self-Degradable DNA Hydrogels: Design, Synthesis, and Applications

Adv Healthc Mater. 2023 Jun;12(16):e2203031. doi: 10.1002/adhm.202203031. Epub 2023 Feb 21.

Abstract

DNA hydrogels play an increasingly important role in biomedicine and bioanalysis applications. Due to their high programmability, multifunctionality and biocompatibility, they are often used as effective carriers for packing drugs, cells, or other bioactive cargoes in vitro and in vivo. However, the stability of the DNA hydrogels prevents their in-demand rapid release of cargoes to achieve a full therapeutic effect in time. For bioanalysis, the generation of signals sometimes needs the DNA hydrogel to be rapidly degraded when sensing target molecules. To meet these requirements, stimulus-responsive DNA hydrogels are designed. By responding to different stimuli, self-degradable DNA hydrogels can switch from gel to solution for quantitative bioanalysis and precision cargo delivery. This review summarizes the recently developed innovative methods for designing stimuli-responsive self-degradable DNA hydrogels and showed their applications in the bioanalysis and biomedicines fields. Challenges, as well as prospects, are also discussed.

Keywords: DNA hydrogels; bioanalysis; biomedicines; self-degradable materials; stimuli-responsiveness.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA* / metabolism
  • Hydrogels*

Substances

  • Hydrogels
  • DNA