The ruptures of tailings mine dams in the cities of Mariana and Brumadinho contaminated local Brazilian Rivers with toxic metals. Herein, we describe a scaled-up biosorbent based on natural macauba endocarp (NTE) and macauba endocarp chemically treated (TE) to remove Al3+, Mn2+ and Fe3+ from aqueous solutions. For the TE material: the variation of pH and temperature of water did not cause significant sorption interferences; the kinetics studies suggest a pseudo-second-order model; the adsorption isotherms revealed that the Langmuir equation was the best fit for Al3+ and Mn2+, while the Freundlich equation best described the Fe3+; and the maximum adsorption capacities were between 0.268 mg g-1 and 1.379 mg g-1. A scaled-up was carried out using an adsorption column to remove the metals from Rio Paraopeba River water samples and the results showed that both NTE and TE are potentially low cost biosorbents for removing Al3+, Mn2+ and Fe3+.
Keywords: Acrocomia aculeate; Macauba endocarp; Metal contaminants; Water contamination.
Copyright © 2023 Elsevier B.V. All rights reserved.