A zinc-conducting chalcogenide electrolyte

Sci Adv. 2023 Jan 27;9(4):eade2217. doi: 10.1126/sciadv.ade2217. Epub 2023 Jan 27.

Abstract

A solid-state zinc-ion battery can fundamentally eliminate dendrite formation and hydrogen evolution on the zinc anode from aqueous systems. However, enabling fast zinc ion + conduction in solid crystals is thought to be impossible. Here, we demonstrated a fluorine-doping approach to achieving fast Zn2+ transport in mesoporous ZnyS1-xFx. The substitutional doping of fluoride ion with sulfide substantially reduces Zn2+ migration barrier in a crystalline phase, while mesopore channels with bounded dimethylformamide enable nondestructive Zn2+ conduction along inner pore surface. This mesoporous conductor features a high room-temperature Zn2+ conductivity (0.66 millisiemens per centimeter, compared with 0.01 to 1 millisiemens per centimeter for lithium solid-state electrolyte) with a superior cycling performance (89.5% capacity retention over 5000 cycles) in a solid zinc-ion battery and energy density (0.04 watt-hour per cubic centimeter) in a solid zinc-ion capacitor. The universality of this crystal engineering approach was also verified in other mesoporous zinc chalcogenide materials, which implies various types of potential Zn2+-conducting solid electrolytes.