Despite growing interest in applying RNA's unique structural characteristics to solve diverse biotechnology and nanotechnology problems, there are few computational tools for targeted tertiary design. As a result, RNA 3D design is traditionally slow, resource-consuming, and dependent on expert modeling. In this chapter, we discuss our recently developed software package: RNAMake, a set of applications capable of designing RNA tertiary structures to solve various relevant nanotechnology problems and provide basic thermodynamic calculations for the generated designs. We provide in-depth examples and instructions for designing example RNA nanostructures such as minimal RNA sequences containing a single tertiary contact, generating RNAs that stabilize small-molecule ligands, and building tethers that link ribosomal subunits together. We also highlight the addition of a new Monte Carlo design algorithm and the ability to estimate the thermodynamic contribution of helical elements in RNA 3D structures.
Keywords: Computer-guided design; RNA design; RNA tertiary structure.
© 2023. Springer Science+Business Media, LLC, part of Springer Nature.