Global warming and heavy metal-contaminated soils co-occur in natural ecosystems. Flavonoids and phenolic acids in plants have significant antioxidant activity and free radical scavenging ability, which can quickly increase under adverse environments. Arbuscular mycorrhizal fungi (AMF) colonization can affect the synthesis of flavonoids and phenolic acids in host plants. This study focused on the main effect of Glomus mosseae, cadmium (Cd, 8 mg kg-1 dry soils), and elevated temperature (ET, + 3 °C) on main flavonoids and phenolic acids in 120-d Medicago sativa L. (alfalfa). Elevated temperature decreased G. mosseae colonization ratio by 49.5% under Cd exposure. Except for p-hydroxybenzoic acid, flavonoids and phenolic acids content in shoots increased (p < 0.05) under G. mosseae + Cd relative to Cd only. G. mosseae and Cd showed significant effects on rutin, quercetin, apigenin, liquiritigenin, gallic acid, p-hydroxybenzoic acid, p-coumaric acid, and ferulic acid, and G. mosseae colonization led to increases in these compounds by 41.7%, 35.4%, 32.2%, 267.8%, 84.7%, 33.5%, 102.8%, and 89.4%, respectively, under ET + Cd. Carbon, N, and Cd in alfalfa and G. mosseae colonization rate were significant factors on flavonoids and phenolic acids accumulation. Additionally, P content in shoots significantly influenced flavonoids content. G. mosseae inoculation significantly stimulated the synthesis of main flavonoids and phenolic acids in alfalfa shoots under ET + Cd, which was helpful to understand the regulation of AMF on non-enzyme antioxidant system of plants grown in heavy metal-contaminated soils under global change scenarios.
Keywords: Colonization rate; Flavonoids; Glomus mosseae; High-performance liquid chromatography; Monomer compound; Phenolic acids.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.