Efficient electron-hole separation and carrier utilization are key factors in photocatalytic systems. Here, we use a metal-organic framework (NH2-UiO-66) modified with inner platinum nanoparticles and outer cadmium sulfide (CdS) nanoparticles to construct the ternary composite Pt@NH2-UiO-66/CdS, which has a spatially separated, hierarchical structure for enhanced visible-light-driven hydrogen evolution. Relative to pure NH2-UiO-66, Pt@NH2-UiO-66, and NH2-UiO-66/CdS samples, the Pt@NH2-UiO-66/CdS composite exhibits much higher hydrogen yields with an apparent quantum efficiency of 40.3% at 400 nm irradiation and stability over the most MOF-based photocatalysts. Transient absorption measurements reveal spatial charge-separation dynamics in the composites. The catalyst's high activity and durability are attributed to charge separation following an efficient photogenerated hole-transfer band-trap pathway. This work holds promise for enhanced MOF-based photocatalysis using efficient hole-transfer routes.
© 2022. The Author(s).