Hepatobiliary neuroendocrine neoplasms are rare cancers in humans and dogs. To date, no large-scale primary hepatobiliary neoplasm omics analyses exist in any species. This limits the development of diagnostic biomarkers and targeted therapeutics. Neuroendocrine cancers are a heterogenous group of neoplasms categorized by their tissue-of-origin. Because the anatomic niche of neuroendocrine neoplasms shapes tumor phenotype, we sought to compare the proteomes of 3 canine hepatobiliary neoplasms to normal hepatobiliary tissue and adrenal glands with the objective of identifying unique protein signatures. Protein was extracted from formalin-fixed paraffin-embedded samples and submitted for tandem mass spectroscopy. Thirty-two upregulated and 126 downregulated differentially expressed proteins were identified. Remarkably, 6 (19%) of the upregulated proteins are correlated to non-hepatobiliary neuroendocrine neoplasia and 16 (50%) are functionally annotated within the exosome cellular compartment key to neuroendocrine signaling. Twenty-six (21%) downregulated proteins are enriched in metabolic pathways consistent with alterations in cancer. These results suggests that characteristic neoplastic protein signatures can be gleaned from small data sets using a comparative proteomics approach.
Copyright: © 2023 Batts et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.