Introduction: Glioblastoma (GBM) has a very poor prognosis despite current treatment. We previously found cytotoxic synergy between the AURKA inhibitor alisertib and the CNS-penetrating taxane TPI 287 against GBM tumor cells in vitro.
Methods: We used an orthotopic human GBM xenograft mouse model to test if TPI 287 potentiates alisertib in vivo. Western blotting, immunohistochemistry, siRNA knockdown, annexin V binding, and 3-dimensional Matrigel invasion assays were used to investigate potential mechanisms of alisertib and TPI 287 treatment interactions.
Results: Alisertib + TPI 287 combination therapy significantly prolonged animal survival compared to vehicle (p = 0.011), but only marginally compared to alisertib alone. Alisertib, TPI 287, and combined alisertib + TPI 287 reduced animal tumor volume compared to vehicle-treated controls. This was statistically significant for the combination therapy at 4 weeks (p < 0.0001). Alisertib + TPI 287 treatment decreased anti-apoptotic Bcl-2 protein levels in vivo and in vitro. Expression of the pro-apoptotic protein Bak was significantly increased by combination treatment (p < 0.0001). Pro-apoptotic Bim and Bak knockdown by siRNA decreased apoptosis by alisertib + TPI 287 in GB9, GB30, and U87 cells (p = 0.0005 to 0.0381). Although alisertib and TPI 287 significantly reduced GBM cell invasion (p < 0.0001), their combination was no more effective than TPI 287 alone.
Conclusions: Results suggest that apoptosis is the dominant mechanism of potentiation of GBM growth inhibition by alisertib + TPI 287, in part through effects on Bcl-2 family proteins, providing a rationale for further laboratory testing of an AURKA inhibitor plus TPI 287 as a potential therapy against GBM.
Keywords: AURKA; Alisertib; Apoptosis; Aurora Kinase A; Bak; Bcl-2; Bim; Glioblastoma; In vivo; Invasion; Survival; TPI 287; Taxane; Tumor growth.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.