Understanding individual-block solvation in self-assembled block copolymer systems is experimentally difficult, but this solvation underpins the assembly and disassembly observed at the bulk scale. Here, covalently attached viscosity-sensitive molecular rotors for fluorescence lifetime imaging microscopy uncover and quantitatively elucidate previously undisclosed differential block-selective responses toward solvation changes upon addition of DMSO and THF to self-assembled ROMP-based amphiphilic block copolymers. The sensitivity of this method provides unique information on block-selective solvent-triggered assembly and disassembly mechanisms, revealing behaviors invisible to or with superior sensitivity to traditional 1H NMR spectroscopy. These experiments demonstrate an analytical method and provide a granular mechanistic understanding, both suitable for fine tuning block copolymer assembly and disassembly processes.