Objectives: As-low-as-diagnostically-acceptable (ALADA) doses are substantially lower than current diagnostic reference levels. To improve dose management, a reference quality approach was tested in which phantom quality metrics of a clinical ALADA dose reference protocol were used to benchmark potential ALADA dose protocols for various scanner models.
Methods: Spatial resolution, contrast resolution, contrast-to-noise ratio (CNR) and subjective noise and sharpness were evaluated for a clinical ALADA dose reference protocol at 80 kV and 40 mA (CTDIvol 2.66 mGy) and compared with test protocols of two CT scanners at 100 kV and 35 mA (3.08-3.44 mGy), 80 kV and 54-61 mA (2.65 mGy), 80 kV and 40 mA (1.73-1.92 mGy), and 80 kV and 21-23 mA (1.00-1.03 mGy) using different kernels, filtered backprojection and iterative reconstructions. The test protocols with the lowest dose showing quality metrics non-inferior to the reference protocol were verified in a cadaver study by determining the diagnostic accuracy of detection of maxillofacial fractures and CNR of the optical nerve and rectus inferior muscle.
Results: 36 different image series were analysed in the phantom study. Based on the phantom quality metrics, potential ALADA dose protocols at 1.73-1.92 mGy were selected. Compared with the reference images, the selected protocols showed non-inferiority in the detection and classification of maxillofacial fractures and non-inferior CNR of orbital soft tissues in the cadaver study.
Conclusions: Reference quality metrics from clinical ALADA dose protocols may be used to guide selection of potential ALADA dose protocols of different CT scanners.
Keywords: Bone fractures; Comparative study; Diagnostic Imaging; Face; Radiation dose.