In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Keywords: BCG.HIVA; HIV-1; HPV16; P18I10; T cell-mediated immunity; T20 enfuvirtide; humoral immunity; vaccine; virus-like particles.