Study of the Chemical Profile and Anti-Fungal Activity against Candida auris of Cinnamomum cassia Essential Oil and of Its Nano-Formulations Based on Polycaprolactone

Plants (Basel). 2023 Jan 12;12(2):358. doi: 10.3390/plants12020358.

Abstract

Background: Candida auris represents an emerging pathogen that results in nosocomial infections and is considered a serious global health problem. The aim of this work was to evaluate the in vitro antifungal efficacy of Cinnamomum cassia essential oil (CC-EO) pure or formulated in polycaprolactone (PCL) nanoparticles against ten clinical strains of C. auris.

Methods: nanoparticles of PCL were produced using CC-EO (nano-CC-EO) and cinnamaldehyde (CIN) through the nanoprecipitation method. The chemical profile of both CC-EO and nano-CC-EO was evaluated using SPME sampling followed by GC-MS analysis. Micro-broth dilution tests were performed to evaluate both fungistatic and fungicidal effectiveness of CC-EO and CIN, pure and nano-formulated. Furthermore, checkerboard tests to evaluate the synergistic action of CC-EO or nano-CC-EO with micafungin or fluconazole were conducted. Finally, the biofilm disrupting activity of both formulations was evaluated.

Results: GC-MS analysis shows a different composition between CC-EO and nano-CC-EO. Moreover, the microbiological analyses do not show any variation in antifungal effectiveness either towards the planktonic form (MICCC-EO = 0.01 ± 0.01 and MICnano-CC-EO = 0.02 ± 0.01) or the biofilm form. No synergistic activity with the antifungal drugs tested was found.

Conclusions: both CC-EO and nano-CC-EO show the same antimicrobial effectiveness and are potential assets in the fight against C. auris.

Keywords: antifungal properties; cinnamaldehyde; cinnamon.

Grants and funding

This research received no external funding.