Inhibition of MALT1 paracaspase activity improves lesion recovery following spinal cord injury

Sci Bull (Beijing). 2019 Aug 30;64(16):1179-1194. doi: 10.1016/j.scib.2019.04.026. Epub 2019 Apr 22.

Abstract

Spinal cord injury (SCI) is a devastating traumatic injury that causes persistent, severe motor and sensory dysfunction. Immune responses are involved in functional recovery after SCI. Mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) has been shown to regulate the survival and differentiation of immune cells and to play a critical role in many diseases, but its function in lesion recovery after SCI remains unclear. In this paper, we generated KI (knock in) mice with a point mutation (C472G) in the active center of MALT1 and found that the KI mice exhibited improved functional recovery after SCI. Fewer macrophages were recruited to the injury site in KI mice and these macrophages differentiated into anti-inflammatory macrophages. Moreover, macrophages from KI mice exhibited reduced phosphorylation of p65, which in turn resulted in decreased SOCS3 expression and increased pSTAT6 levels. Similar results were obtained upon inhibition of MALT1 paracaspase with the small molecule inhibitor "MI-2" or the more specific inhibitor "MLT-827". In patients with SCI, peripheral blood mononuclear cells (PBMC) displayed increased MALT1 paracaspase. Human macrophages showed reduced pro-inflammatory and increased anti-inflammatory characteristics following the inhibition of MALT1 paracaspase. These findings suggest that inhibition of MALT1 paracaspase activity in the clinic may improve lesion recovery in subjects with SCI.

Keywords: Anti-inflammatory macrophage; MALT1 paracaspase activity; NF-κB; Pro-inflammatory macrophage; Spinal cord injury.