Highly-branched dendritic Pt-based nanocrystals possess great potential in catalyzing the oxygen reduction reaction (ORR), but encounter performance ceiling due to their poor thermal and electrochemical stability. Here, we present a novel PtFe nanodendrites (NDs) branched with two-dimensional (2D) twinned nanoplates rather than conventional 1D nanowires, which breaks the ORR performance ceiling of dendritic catalysts by inducing the unique Pt-skin configuration via rationally thermal treatment. By further hybridizing the Pt-skin PtFe NDs/C with amino-functionalized ionic liquids (ILs), we achieve an unprecedented mass activity of 3.15 A/mgPt at 0.9 V versus reversible hydrogen electrode (RHE) in the PtFe-based ORR electrocatalytic system. They also show excellent electrocatalytic durability for ORR with negligible activity decay and no apparent structural change after 20,000 cycles, in sharp contrast to the nanowires branched PtFe NDs counterpart. The remarkable catalytic performance is attributed to a combination of several structural features, including 2D morphology, twin boundary, partially ordered phase and strong coordination with amino group. This work highlights the significance of stabilizing electrocatalytic structures via morphology tuning, which thus enables further surface and interface modification for performance breakthrough in ORR electrocatalysis.
Keywords: Dendrities; Ionic liquid; Nanoplates; Oxygen reduction reaction; PtFe alloy.
Copyright © 2019 Science China Press. Published by Elsevier B.V. All rights reserved.