Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalytic activity in a single material are attractive for unitized regenerative fuel cells and overall water splitting technologies. As the best-known HER and ORR electrocatalysts, Pt and its alloys have only moderate OER activity. Ruthenium and iridium oxides exhibit the highest OER activities but not as active as Pt for HER and ORR. Here, we proposed a general principle for achieving trifunctional electrocatalysis for three reactions in a single material. Using the newly-synthesized pyrazine-modified graphdiyne (PR-GDY) as an example, we demonstrated that the synergistic effect of the pyridinic nitrogen and anchored transition-metal (TM) single atoms renders highly-efficient HER/OER/ORR trifunctional electrocatalytic activity. For the Ni-doped PR-GDY, the overpotentials for HER, OER and ORR can be respectively as low as -0.05, 0.29 and 0.38 V, which are comparable or even superior to the best-known single-functional and bi-functional precious electrocatalysts. These computational results offer not only a promising trifunctional electrocatalyst but also a strategy for the design of multifunctional electrocatalysts.
Keywords: Density-functional theory; Pyrazine-modified graphdiyne (PR-GDY); Single atoms; Trifunctional electrocatalysts.
Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved.