Interface Engineering of All-Solid-State Batteries Based on Inorganic Solid Electrolytes

ChemSusChem. 2023 May 5;16(9):e202202158. doi: 10.1002/cssc.202202158. Epub 2023 Mar 20.

Abstract

All-solid-state batteries (ASSBs) based on inorganic solid electrolytes (SEs) are one of the most promising strategies for next-generation energy storage systems and electronic devices due to the higher energy density and intrinsic safety. However, the poor solid-solid contact and restricted chemical/electrochemical stability of inorganic SEs both in cathode and anode SE interfaces cause contact failure and the degeneration of SEs during prolonged charge-discharge processes. As a result, the increasing interface resistance significantly affects the coulombic efficiency and cycling performance of ASSBs. Herein, we present a fundamental understanding of physical contact and chemical/electrochemical features of ASSB interfaces based on mainstream inorganic SEs and summarize the recent work on interface modification. SE doping, optimizing morphology, introducing interlayer/coating layer, and utilizing compatible electrode materials are the key methods to prevent side reactions, which are discussed separately in cathode/anode-SE interface. We also highlight the constant extra stack pressure applied during ASSB cycling, which is important to the electrochemical performance. Finally, our perspectives on interface modification for practical high-performance ASSBs are put forward.

Keywords: all-solid-state batteries; inorganic solid electrolyte; interface; modification; stack pressure.

Publication types

  • Review