The histoblot (in situ immunoblotting) technique is a simple, reproducible, and sensitive method for protein detection that allows both protein quantitation and analysis of tissue distribution. This easy and fast method allows the direct transfer of native proteins from unfixed frozen tissue sections by mechanical pressure to an immobilizing matrix. Proteins are directly blotted onto nitrocellulose membranes that are then immunolabelled similar to a Western blot, but the result is an immunohistochemical imprint of the section retaining all proteins. The histoblot combines advantages of western blot and immunohistochemical methods and yields optimal accessibility of proteins blotted on membranes whilst also preserving anatomical resolution. In addition, it avoids chemical modifications, crosslinking, or semi-denaturation of proteins, which can alter the access of antibody to epitopes, as introduced by conventional immunohistochemistry. Therefore, the histoblot often enables the use of antibodies that do not recognise the target protein in fixed tissue samples. This method has become a trusted alternative to reveal and compare the regional distribution and expression profile of different proteins in the brain in physiological and pathological conditions. In addition, the technique exhibits a high subregional resolution, although is not suitable to unravel protein distribution at the cellular and subcellular levels. In this review, we introduce the histoblot procedure used in our laboratory on brain sections for the identification of quantitative changes of neurotransmitter receptors, ion channels and other signalling molecules in the brain. We also discuss the potentialities, limitations, and fundamental principles of this technique.
©The Author(s) 2023. Open Access. This article is licensed under a Creative Commons CC-BY International License.