Supramolecular hydrogels have received widespread attention due to their soft texture, strong hygroscopicity, and good biocompatibility. These materials have become particularly attractive for sensing, tissue engineering, fluorescence encoding, wound healing, etc. Inspired by the assembly of G-quadruplexes, we choose the boric acid/polyvinyl alcohol/guanosine system to construct a novel triple-network supramolecular hydrogel "tri-BA@PVA/G" via non-covalent cross-linking, and the effect of the concentration of each component on the hydrogel stability was systematically revealed at the same time. Then, the biocompatibility, shape adaption and optical information storage capacity, the rapid hemostatic ability and the ability of the hydrogel to promote wound healing were confirmed both in vitro and in vivo. These results that predict the properties and reveal prospective applications in the field of wound hemostasis have a certain guiding significance for the subsequent preparation of borate-based triple network hydrogels which can be used as wound hemostatic materials.