Power and sample size analysis for longitudinal mixed models of health in populations exposed to environmental contaminants: a tutorial

BMC Med Res Methodol. 2023 Jan 12;23(1):12. doi: 10.1186/s12874-022-01819-y.

Abstract

Background: When evaluating the impact of environmental exposures on human health, study designs often include a series of repeated measurements. The goal is to determine whether populations have different trajectories of the environmental exposure over time. Power analyses for longitudinal mixed models require multiple inputs, including clinically significant differences, standard deviations, and correlations of measurements. Further, methods for power analyses of longitudinal mixed models are complex and often challenging for the non-statistician. We discuss methods for extracting clinically relevant inputs from literature, and explain how to conduct a power analysis that appropriately accounts for longitudinal repeated measures. Finally, we provide careful recommendations for describing complex power analyses in a concise and clear manner.

Methods: For longitudinal studies of health outcomes from environmental exposures, we show how to [1] conduct a power analysis that aligns with the planned mixed model data analysis, [2] gather the inputs required for the power analysis, and [3] conduct repeated measures power analysis with a highly-cited, validated, free, point-and-click, web-based, open source software platform which was developed specifically for scientists.

Results: As an example, we describe the power analysis for a proposed study of repeated measures of per- and polyfluoroalkyl substances (PFAS) in human blood. We show how to align data analysis and power analysis plan to account for within-participant correlation across repeated measures. We illustrate how to perform a literature review to find inputs for the power analysis. We emphasize the need to examine the sensitivity of the power values by considering standard deviations and differences in means that are smaller and larger than the speculated, literature-based values. Finally, we provide an example power calculation and a summary checklist for describing power and sample size analysis.

Conclusions: This paper provides a detailed roadmap for conducting and describing power analyses for longitudinal studies of environmental exposures. It provides a template and checklist for those seeking to write power analyses for grant applications.

Keywords: Free software; General linear mixed model; Longitudinal study design; Persistent chemicals; Power analysis; Repeated measurements; Sample size.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Environmental Exposure* / adverse effects
  • Humans
  • Longitudinal Studies
  • Research Design*
  • Sample Size
  • Software