Sub-nm RuOx Clusters on Pd Metallene for Synergistically Enhanced Nitrate Electroreduction to Ammonia

ACS Nano. 2023 Jan 11. doi: 10.1021/acsnano.2c07911. Online ahead of print.

Abstract

The electrochemical nitrate reduction to ammonia reaction (NO3RR) has emerged as an appealing route for achieving both wastewater treatment and ammonia production. Herein, sub-nm RuOx clusters anchored on a Pd metallene (RuOx/Pd) are reported as a highly effective NO3RR catalyst, delivering a maximum NH3-Faradaic efficiency of 98.6% with a corresponding NH3 yield rate of 23.5 mg h-1 cm-2 and partial a current density of 296.3 mA cm-2 at -0.5 V vs RHE. Operando spectroscopic characterizations combined with theoretical computations unveil the synergy of RuOx and Pd to enhance the NO3RR energetics through a mechanism of hydrogen spillover and hydrogen-bond interactions. In detail, RuOx activates NO3- to form intermediates, while Pd dissociates H2O to generate *H, which spontaneously migrates to the RuOx/Pd interface via a hydrogen spillover process. Further hydrogen-bond interactions between spillovered *H and intermediates makes spillovered *H desorb from the RuOx/Pd interface and participate in the intermediate hydrogenation, contributing to the enhanced activity of RuOx/Pd for NO3--to-NH3 conversion.

Keywords: electrocatalytic nitrate reduction to ammonia; metallene; operando electrochemical characterizations; sub-nm clusters; theoretical computations.