Naringenin is a natural flavonoid that is widely distributed in citrus fruits and pharmacologically demonstrated to licit lipid-lowering activity. However, the clinical relevance of naringenin is limited due to its poor water solubility and inefficient absorption. In this study, we designed and developed naringenin-zein-sodium caseinate-galactosylated chitosan nanoparticles (GC-NPs) for hepatocyte-specific targeting, with naringenin-zein-sodium caseinate-chitosan nanoparticles (CS-NPs) as a control. Electrostatic adsorption was the primary binding mode in the GC-NPs and CS-NPs. Moreover, the particle size and zeta potential of GC-NPs were larger than those of CS-NPs and both types of nanoparticles had similar encapsulation rates. In vitro study experiments demonstrated that GC-NPs aggregated inside and outside of the cell membrane and significantly inhibited total triglyceride and cholesterol levels in oleic acid-induced HepG2 cells (p < 0.05). In high-fat diet-fed C57BL/6J mice, GC-NPs administration visibly improved the body weight, total cholesterol, and triglyceride content in the serum and liver, and high-density lipoprotein cholesterol levels improved, which corresponded to liver histological results. Additionally, in vitro and in vivo assays demonstrated that GC-NPs exhibited higher lipid-lowering activity than CS-NPs and naringenin monomers. These results suggest that GC-NPs are effective for oral delivery of naringenin in lipid-lowering therapies.
Keywords: Galactosylated chitosan; Lipid-lowering; Nanoparticles; Naringenin; Zein.
Copyright © 2023. Published by Elsevier B.V.