Background: Septic acute kidney injury (AKI) is a serious complication of sepsis, which greatly threatened the life safety of critically ill patients. Recently, circular RNA is considered to be implicated in sepsis-induced renal cell damage. However, the role of circ_0114428 in sepsis AKI is still unclear. Methods: LPS was used to establish a sepsis-related AKI cell model. The expression of circ_0114428, microRNA (miR)-370-3p, tissue inhibitor of metalloproteinase-2 (TIMP2), Proliferating cell nuclear antigen, Bax, and Bcl-2 were detected by quantitative real-time polymerase chain reaction and Western blot. Cell counting kit 8 and enzyme-linked immunosorbent assay were used to measure cell proliferation ability and the secretion of inflammatory factors (tumor necrosis factor α, interleukin 1β, and interleukin 6), respectively. Cell cycle and apoptosis rate were analyzed by flow cytometry. Caspase-3 assay kits were used to detect Caspase-3 activity. Interaction between miR-370-3p and circ_0114428 or TIMP2 was analyzed by bioinformatics analysis, a dual-luciferase reporter assay, and RNA immunoprecipitation assay. Results: Circ_0114428 was upregulated in septic AKI serum samples and LPS-induced HK2 cells. The knockdown of circ_0114428 notably promoted cell proliferation and cycle, whereas it restrained cell inflammation and apoptosis in LPS-stimulated HK2 cells. Subsequent mechanism analysis revealed that miR-370-3p was a target of circ_0114428, and miR-370-3p inhibition could rescue the effects of circ_0114428 downregulation on LPS-induced cell injury. Meanwhile, TIMP2 was a target gene of miR-370-3p. miR-370-3p mimic could attenuate LPS-induced cell injury, whereas these impacts were overturned by overexpressed TIMP2. Furthermore, circ_0114428 enhanced TIMP2 protein expression by sponging miR-370-3p. Conclusion: Our data demonstrated that circ_0114428 contributed to septic AKI progression by regulating miR-370-3p-mediated TIMP2 expression, which provided a promising target for septic AKI treatment.
Copyright © 2023 by the Shock Society.