Uridine diphosphate glucuronosyltransferase (UGT) enzymes conjugate many lipophilic chemicals, such as drugs, environmental contaminants, and endogenous compounds, promoting their excretion. The complexity of UGT kinetics, and the location of enzyme active site in endoplasmic reticulum lumen, requires an accurate optimisation of enzyme assays.In the present study, we characterised UGT activity in liver microsomes of green turtles (Chelonia mydas), an endangered species. The conditions for measuring UGT activity were standardised through spectrofluorimetric methods, using the substrates 4-methylumbelliferone (4-MU) and uridine diphosphate glucuronic acid (UDPGA) at 30 °C and pH 7.4.The green turtles showed UGT activity at the saturating concentrations of substrates of 250 µM to 4-MU and 7 mM to UDPGA. The alamethicin, Brij®58, bovine serum albumin (BSA), and magnesium increased UGT activity. The assay using alamethicin (22 µg per mg of protein), magnesium (1 mM), and BSA (0.25%) reached the highest Vmax (1203 pmol·min-1mg·protein-1). Lithocholic acid and diclofenac inhibited UGT activity in green turtles.This study is the first report of UGT activity in the liver of green turtles and provides a base for future studies to understand the mechanisms of toxicity by exposure to contaminants in this charismatic species.
Keywords: Conjugated metabolites; detoxification; enzyme kinetics; glucuronidation; green turtle UGT activity.