Genome sequencing progenies of magic mushrooms (Psilocybe subaeruginosa) identifies tetrapolar mating and gene duplications in the psilocybin pathway

Fungal Genet Biol. 2023 Mar:165:103769. doi: 10.1016/j.fgb.2022.103769. Epub 2022 Dec 29.

Abstract

Knowledge of breeding systems and genetic diversity is critical to select and combine desired traits that advance new cultivars in agriculture and horticulture. Mushrooms that produce psilocybin, magic mushrooms, may potentially be used in therapeutic and wellness industries, and stand to benefit from genetic improvement. We studied haploid siblings of Psilocybe subaeruginosa to resolve the genetics behind mating compatibility and advance knowledge of breeding. Our results show that mating in P. subaeruginosa is tetrapolar, with compatibility controlled at a homeodomain locus with one copy each of HD1 and HD2, and a pheromone/receptor locus with four homologs of the receptor gene STE3. An additional two pheromone/receptor loci homologous to STE3 do not appear to regulate mating compatibility. Alleles in the psilocybin gene cluster did not vary among the five siblings and were likely homozygous in the parent. Psilocybe subaeruginosa and its relatives have three copies of PsiH genes but their impact on production of psilocybin and its analogues is unknown. Genetic improvement in Psilocybe will require access to genetic diversity from the centre of origin of different species, identification of genes behind traits, and strategies to avoid inbreeding depression.

Keywords: Fungal genomics; Fungal siblings; Genome; Sexual reproduction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Duplication
  • Genes, Mating Type, Fungal
  • Pheromones
  • Psilocybe* / genetics
  • Psilocybin*
  • Receptors, Pheromone / genetics

Substances

  • Psilocybin
  • Receptors, Pheromone
  • Pheromones

Supplementary concepts

  • Psilocybe cubensis
  • Psilocybe subaeruginosa