Introduction: Cognitive impairment is common in the course of Parkinson's disease (PD) and displays a continuum from subjective cognitive impairment to dementia. Illuminating the pathophysiological processes associated with the continuum may help create follow-up and new treatment approaches. In this context, large-scale intrinsic connectivity networks are widely investigated to elucidate the neural processes underlying PD and are promising as non-invasive biomarkers. This systematic review aims to examine the alterations in large-scale intrinsic connectivity networks in the continuum of PD-associated cognitive impairment.
Method: ScienceDirect, Web of Science, and PubMed databases were searched with the specified keywords. The studies obtained as a result of this review were investigated by the PRISMA criteria, which were taken as a basis for the systematic review and writing of meta-analyses.
Results: A total of 974 studies were obtained from three databases. Twenty studies were included in the systematic review based on predetermined eligibility criteria. Among the large-scale connectivity networks examined in these studies, it was found that sensory-motor networks decreased their connectivity in the continuum of PD-associated cognitive impairment, and there were conflicting results in terms of cognitive networks.
Conclusion: Well-designed longitudinal studies are needed to clarify the alterations in the intrinsic connectivity networks in the PD cognitive impairment continuum. In these studies, it is necessary to define the cognitive disorder groups well, to control the connectivity changes that may occur due to dopaminergic treatment, and to evaluate Parkinson's patients with subjective cognitive impairment and dementia within the continuum.
Keywords: Functional magnetic resonance imaging; Parkinson’s disease; Parkinson’s disease dementia; Parkinson’s disease with mild cognitive impairment; intrinsic connectivity networks; resting-state networks.
Copyright: © 2022 Turkish Neuropsychiatric Society.