Purpose: Nanodiamonds (NDs) represent a new class of nanoparticles and have gained increasing interest in medical applications. Modifying the surface coating by attaching binding ligands or imaging probes can transform NDs into multi-modal targeting probes. This study evaluated the biokinetics and biodistribution of 68Ga-radiolabelled NDs in a xenograft model.
Procedures: NDs were coated with an albumin-derived copolymer modified with desferrioxamine to provide a chelator for radiolabeling. In vivo studies were conducted in AR42J tumor-bearing CD1 mice to evaluate biodistribution and tumor accumulation of the NDs.
Results: Coated NDs were successfully radiolabeled using 68Ga at room temperature with radiolabeling efficiencies up to 91.8 ± 3.2 % as assessed by radio-TLC. In vivo studies revealed the highest accumulation in the liver and spleen, whereas tumor radioactivity concentration was low.
Conclusions: Radiolabeling of coated NDs could be achieved. However, the obtained results indicate these coated NDs' limitations in their biodistribution within the conducted studies.
Keywords: Nanodiamonds; Radiolabeling; Small animal PET.
Copyright © 2022. Published by Elsevier Inc.