Several alkaline earth or rare earth binary monosilicides and -germanides possess complex bonding properties, such as polycation formation exceeding the scope of classical electron counting rules. In this study, we present characterization by powder and single-crystal diffraction and thermal analysis of CeGe, one of the few monogermanides crystallizing in the FeB-type structure. Comparative computational investigations for structure types experimentally observed for monogermanides and alternative structures with different structural motifs were performed to gain energetical insights into this family of compounds, underlining the preference for infinite germanium chains over other structural motifs. Formation enthalpy calculations and structural chemical analysis highlight the special position of FeB-type compounds among the monogermanides.
Keywords: X-ray diffraction; chemical bonding; crystal chemistry; intermetallic compounds.