Pigs have become an ideal model system for human disease research and development and an important farm animal that provides a valuable source of nutrition. To profile the all-sided gene expression and their biological functions across multiple tissues, we conducted a comprehensive analysis of gene expression on a large scale around the side of housekeeping genes (HKGs), tissue specific genes (TSGs), and the co-expressed genes in 14 various tissues. In this study, we identified 2351 HKGs and 3018 TSGs across tissues, among which 4 HKGs (COX1, UBB, OAZ1/NPFF) exhibited low variation and high expression levels, and 31 particular TSGs (e.g., PDC, FKBP6, STAT2, and COL1A1) were exclusively expressed in several tissues, including endocrine brain, ovaries, livers, backfat, jejunum, kidneys, lungs, and longissimus dorsi muscles. We also obtained 17 modules with 230 hub genes (HUBGs) by weighted gene co-expression network analysis. On the other hand, HKGs functions were enriched in the signaling pathways of the ribosome, spliceosome, thermogenesis, oxidative phosphorylation, and nucleocytoplasmic transport, which have been highly suggested to involve in the basic biological tissue activities. While TSGs were highly enriched in the signaling pathways that were involved in specific physiological processes, such as the ovarian steroidogenesis pathway in ovaries and the renin-angiotensin system pathway in kidneys. Collectively, these stable, specifical, and co-expressed genes provided useful information for the investigation of the molecular mechanism for an understanding of the genetic and biological processes of complex traits in pigs.
Keywords: gene expression; housekeeping genes; pig; tissue-specific genes.