(1) Background: The cause of ARDS after pneumonectomy is still unclear, and the study of risk factors is a subject of debate. (2) Methods: We reviewed a large panel of pre-, peri- and postoperative data of 211 patients who underwent pneumonectomy during the period 2014−2021. Univariable and multivariable logistic regression was used to quantify the association between preoperative parameters and the risk of developing ARDS, in addition to odds ratios and their respective 95% confidence intervals. A backward stepwise selection approach was used to limit the number of variables in the final multivariable model to significant independent predictors of ARDS. A nomogram was constructed based on the results of the final multivariable model, making it possible to estimate the probability of developing ARDS. Statistical significance was defined by a two-tailed p-value < 0.05. (3) Results: Out of 211 patients (13.3%), 28 developed ARDS. In the univariate analysis, increasing age, Charlson Comorbidity Index and ASA scores, DLCO < 75% predicted, preoperative C-reactive protein (CRP), lung perfusion and duration of surgery were associated with ARDS; a significant increase in ARDS was also observed with decreasing VO2max level. Multivariable analysis confirmed the role of ASA score, DLCO < 75% predicted, preoperative C-reactive protein and lung perfusion. Using the nomogram, we classified patients into four classes with rates of ARDS ranking from 2.0% to 34.0%. (4) Conclusions: Classification in four classes of growing risk allows a correct preoperative stratification of these patients in order to quantify the postoperative risk of ARDS and facilitate their global management.
Keywords: ARDS; lung cancer; nomogram; pneumonectomy; risk classification.