Preparation and catalytic application of two different nanocatalysts based on hexagonal mesoporous silica (HMS) in synthesis of tetrahydrobenzo[b]pyran and 1,4-dihydropyrano[2,3-c]pyrazole derivatives

Sci Rep. 2022 Dec 21;12(1):22108. doi: 10.1038/s41598-022-26605-0.

Abstract

The present study describes the synthesis, characterization, and investigation of catalytic activity of xanthine-Ni complex (Xa-Ni) and 4-phenylthiosemicarbazide-Cu complex (PTSC-Cu) incorporated into functionalized hexagonal mesoporous silica (HMS/Pr-Xa-Ni and HMS/Pr-PTSC-Cu). These useful mesoporous catalysts had been synthesized and identified using various techniques such as FT-IR, XRD, adsorption-desorption of nitrogen, SEM, TEM, EDX-Map, TGA, AAS and ICP. These spectral techniques successfully confirmed the synthesis of the mesoporous catalysts. The catalytic activity of HMS/Pr-a-Ni (Catalyst A) and HMS/Pr-PTSC-Cu (Catalyst B) were evaluated for synthesis of tetrahydrobenzo[b]pyran and 1,4-dihydropyrano[2,3-c]pyrazole derivatives. HMS/Pr-PTSC-Cu exhibited higher efficiency in green media under milder reaction condition at room temperature. Furthermore, the synthesized nanocatalysts, exhibited appropriate recoverability that can be able to reuse for several times without significant loss of catalytic activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Pyrans*
  • Pyrazoles
  • Silicon Dioxide*
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Pyrans
  • Silicon Dioxide
  • Pyrazoles