Background: Escaping from ER stress-induced apoptosis plays an important role in the progression of many tumours. However, its molecular mechanism in osteosarcoma remains incompletely understood.
Methods: The molecular mechanism was investigated using RNA sequencing, qRT-PCR and Western blot assays. The relationship between LINC00629 and KLF4 was investigated using RNA pulldown and ubiquitylation assays. The transcriptional regulation of laminin subunit alpha 4 (LAMA4) by KLF4 was identified using bioinformatic analysis, a luciferase assay, and a chromatin immunoprecipitation assay.
Results: Here, we demonstrated that LINC00629 was increased under ER stress treatment. Elevated LINC00629 inhibited ER stress-induced osteosarcoma cell apoptosis and promoted clonogenicity and migration in vitro and in vivo. Further mechanistic studies indicated that LINC00629 interacted with KLF4 and suppressed its degradation, which led to a KLF4 increase in osteosarcoma. In addition, we also found that KLF4 upregulated LAMA4 expression by directly binding to its promoter and that LINC00629 inhibited ER stress-induced apoptosis and facilitated osteosarcoma cell clonogenicity and metastasis by activating the KLF4-LAMA4 pathway.
Conclusion: Collectively, our data indicate that LINC00629 is a critical long noncoding RNA (lncRNA) induced by ER stress and plays an oncogenic role in osteosarcoma cell by activating the KLF4-LAMA4 axis.
Keywords: KLF4; LAMA4; LINC00629; Osteosarcoma.
© 2022. The Author(s).