The use of speech as a digital biomarker to detect stress levels is increasingly gaining attention. Yet, heterogeneous effects of stress on specific acoustic speech features have been observed, possibly due to previous studies' use of different stress labels/categories and the lack of solid stress induction paradigms or validation of experienced stress. Here, we deployed a controlled, within-subject psychosocial stress induction experiment in which participants received both neutral (control condition) and negative (negative condition) comparative feedback after solving a challenging cognitive task. This study is the first to use a (non-actor) within-participant design that verifies a successful stress induction using both self-report (i.e., decreased reported valence) and physiological measures (i.e., increased heart rate acceleration using event-related cardiac responses during feedback exposure). Analyses of acoustic speech features showed a significant increase in Fundamental Frequency (F0) and Harmonics-to-Noise Ratio (HNR), and a significant decrease in shimmer during the negative feedback condition. Our results using read-out-loud speech comply with earlier research, yet we are the first to validate these results in a well-controlled but ecologically-valid setting to guarantee the generalization of our findings to real-life settings. Further research should aim to replicate these results in a free speech setting to test the robustness of our findings for real-world settings and should include semantics to also take into account what you say and not only how you say it.
© 2022. The Author(s).