The structure of Nb5Si3at the atomic level is fundamental for identifying its complicated structure in atomic simulations and for further understanding the phase selection behaviors during the solidification of Nb-Si alloys. In this study, the structure of Nb5Si3was investigated using deep-learning molecular dynamic simulations. The idealβNb5Si3is characterized by Nb-centered Voronoi polyhedrons (VPs) <0,0,12,3>, <0,0,12,2>, and Si-centered VPs <0,2,8,2>, <0,2,8,0>. Most initial VPs are distorted at high temperatures due to intense thermal perturbation. A new cluster transformation analysis (CTA) method was proposed to evaluate the stability of ideal VPs against perturbation and predict the possible transformations of the initial VPs in atomic simulations. Most transformations of the initial VPs inβNb5Si3originate from distortions at the edges of the Nb-centered VPs and the faces/vertices of the Si-centered VPs. The distorted VPs inβNb5Si3at high temperatures are dominated by <0,1,10,4>, <0,1,10,5>, <0,2,8,1> and <1,2,5,3> VPs, which are predicted as the primary transformations by the CTA.
Keywords: Nb-Si alloy; Voronoi polyhedron; atomic structure; molecular dynamics.
© 2022 IOP Publishing Ltd.