Background or purpose: Superior vena cava isolation (SVCI) is widely performed adjunctively to atrial fibrillation (AF) ablation. Right phrenic nerve injury (PNI) is a complication of this procedure. The purpose of the study is to determine the optimal PNI prevention method in SVCI.
Methods: A total of 1656 patients who underwent SVCI between 2009 and 2022 were retrospectively examined. PNI was diagnosed based on the diaphragm position and movement in the upright position on chest radiographs before and after SVCI.
Results: With the introduction of various PN monitoring systems over the years, the incidence of SVCI-associated PNI has decreased. However, complete PNI avoidance has not been achieved. PNI incidence according to fluoroscopy-guided PN monitoring, high-output pace-guided, compound motor action potential-guided, and 3-dimensional electro-anatomical mapping (EAM) systems was 8.1% (38/467), 2.7% (13/476), 2.4% (4/130), and 2.8% (11/389), respectively. However, a high-power, short-duration (50 W/7 s) radiofrequency (RF) energy application only on PNI risk points tagged by a 3-dimensional EAM system completely avoids PNI (0%; 0 /160 since April 2021). PNI showed no symptoms and recovered within an average of 188 days post-SVCI, except for a few patients who required > 1 year.
Conclusions: Although PNI incidence decreased annually with the introduction of various monitoring systems, these monitoring systems did not prevent PNI completely. Most notably, the delivery of a high-power, short-duration RF energy only on risk points tagged by EAM prevented PNI completely. PNI recovered in all patients. The application of higher-power, shorter-duration RF energy on risk points tagged by EAM appears to be an optimal PNI prevention maneuver.
Keywords: Phrenic nerve palsy; Prophylactic ablation; Pulmonary vein isolation; Superior vena cava; Supraventricular tachyarrhythmia.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.