Tumor vaccines have been showing a relatively weak response rate in cancer patients, while deficiencies in delivery efficiency to dendritic cells (DCs), as well as DC-intrinsic immunosuppressive signals, contribute to a great extent. In this work, we report an implantable blood clot loaded with liposomes-protamine-hyaluronic acid nanoparticles (LPH NPs) containing vaccine (LPH-vaccine) and LPH NPs containing siRNA (LPH-siRNA) for synergistic DC recruitment and activation. The subcutaneously implanted blood clot scaffold can recruit abundant immune cells, particularly DCs, to form a DC-rich environment in vivo. Within the scaffold, LPH-vaccine effectively delivers antigens and adjuvants to the recruited DCs and induces the maturation of DCs. More importantly, LPH-siRNA that targets programmed death-ligand 1 (PD-L1) and T cell immunoglobulin and mucin-containing molecule 3 (TIM-3) can reduce immunosuppressive signals in mature DCs and prevent the DCs from expressing a regulatory program in the scaffold. The activated DCs correlate with an improved magnitude and efficacy of T cell priming, resulting in the production of tumor antigen-specific T cells in multiple mouse models. Our strategy can also be used for patient-tailored therapy by change of tumor neoantigens, suggesting a promising strategy for cancer therapy in the clinic.
Keywords: PD-L1; TIM-3; blood clot scaffold; liposome; siRNA; tumor vaccine.