Analysis of multipartite bacterial genomes using alignment free and alignment-based pipelines

Arch Microbiol. 2022 Dec 14;205(1):25. doi: 10.1007/s00203-022-03354-2.

Abstract

Since the discovery of second chromosome in Rhodobacter sphaeroides 2.4.1 in 1989, multipartite genomes have been reported in over three hundred bacterial species under nine different phyla. This has shattered the unipartite (single chromosome) genome dogma in bacteria. Since then, many questions on various aspects of multipartite genomes in bacteria have been addressed. However, our understanding of how multipartite genomes emerge and evolve is still lacking. Importantly, the knowledge of genetic factors underlying the differences in multipartite and single-chromosome genomes is lacking. In this work, we have performed comparative evolutionary and functional genomics analyses to identify molecular factors that discriminate multipartite from unipartite bacteria, with the goal to decipher taxon-specific factors, and those that are prevalent across the taxa, underlying these traits. We assessed the roles of evolutionary mechanisms, specifically gene gain, in driving the divergence of bacteria with single and multiple chromosomes. In addition, we performed functional genomic analysis to garner support for our findings from comparative evolutionary analysis. We found genes such as those encoding conserved hypothetical proteins in Deinococcus radiodurans R1, and putative phage phi-C31 gp36 major capsid like and hypothetical proteins in Rhodobacter sphaeroides 2.4.1, which are located on accessory chromosomes in these bacteria but were not found in the inferred ancestral sequences, and on the primary chromosomes, as well as were not found in their closest relatives with single chromosome within the same clade. Our study shines a new light on the potential roles of the secondary chromosomes in helping bacteria with multipartite genomes to adapt to specialized environments or growth conditions.

Keywords: Bacteria; Gene gain; Horizontal gene transfer; Multipartite genomes.

MeSH terms

  • Biological Evolution
  • Chromosomes, Bacterial / genetics
  • Evolution, Molecular
  • Genome, Bacterial*
  • Genomics
  • Rhodobacter sphaeroides* / genetics