In this study, honeycomb lignin-based biochar (HLB) was prepared by hydrothermal activation using industrial lignin as raw material to remove norfloxacin from water. Batch adsorption test results showed that HLB has a strong ability to remove norfloxacin at a wide pH. The maximum adsorption capacity was 529.85 mg/g at 298 K, which is 1.52-fold to 201.46-fold higher than that of other reported materials. HLB showed good selectivity and recycling ability for the adsorption of norfloxacin, the removal rate of NOR reached 99.5% in the presence of competitive ions and maintained at least 98% removal rate after 12 adsorption cycles. The removal rate of norfloxacin in different water reached more than 99% within 8 mins. Pore filling, electrostatic interaction, π-π interaction, and hydrogen bond contributed significantly to the removal of norfloxacin. Among them, the highly aromatized structure of HLB and the abundant oxygen-containing functional groups (OH, CO, etc.) promoted π-π interaction.
Keywords: Adsorption; Characterization; Industrial alkali lignin; Mechanism; Norfloxacin.
Copyright © 2022 Elsevier Ltd. All rights reserved.