Purpose: To establish and validate a nomogram model incorporating both liver imaging reporting and data system (LI-RADS) features and contrast enhanced magnetic resonance imaging (CEMRI)-based radiomics for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) falling the Milan criteria.
Methods: In total, 161 patients with 165 HCCs diagnosed with MVI (n = 99) or without MVI (n = 66) were assigned to a training and a test group. MRI LI-RADS characteristics and radiomics features selected by the LASSO algorithm were used to establish the MRI and Rad-score models, respectively, and the independent features were integrated to develop the nomogram model. The predictive ability of the nomogram was evaluated with receiver operating characteristic (ROC) curves.
Results: The risk factors associated with MVI (P<0.05) were related to larger tumor size, nonsmooth margin, mosaic architecture, corona enhancement and higher Rad-score. The areas under the ROC curve (AUCs) of the MRI feature model for predicting MVI were 0.85 (95% CI: 0.78-0.92) and 0.85 (95% CI: 0.74-0.95), and those for the Rad-score were 0.82 (95% CI: 0.73-0.90) and 0.80 (95% CI: 0.67-0.93) in the training and test groups, respectively. The nomogram presented improved AUC values of 0.87 (95% CI: 0.81-0.94) in the training group and 0.89 (95% CI: 0.81-0.98) in the test group (P<0.05) for predicting MVI. The calibration curve and decision curve analysis demonstrated that the nomogram model had high goodness-of-fit and clinical benefits.
Conclusions: The nomogram model can effectively predict MVI in patients with HCC falling within the Milan criteria and serves as a valuable imaging biomarker for facilitating individualized decision-making.
Keywords: Hepatocellular carcinoma (HCC); Microvascular invasion (MVI); Milan criteria; Nomogram; Radiomics.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.