Forward Genetic Screens as Tools to Investigate Role and Mechanisms of EMT in Cancer

Cancers (Basel). 2022 Nov 30;14(23):5928. doi: 10.3390/cancers14235928.

Abstract

Epithelial-mesenchymal transition (EMT) is a process of cellular plasticity regulated by complex signaling networks. Under physiological conditions, it plays an important role in wound healing and organ repair. Its importance for human disease is given by its central role in chronic fibroproliferative diseases and cancer, which represent leading causes of death worldwide. In tumors, EMT is involved in primary tumor growth, metastasis and therapy resistance. It is therefore a major requisite to investigate and understand the role of EMT and the mechanisms leading to EMT in order to tackle these diseases therapeutically. Forward genetic screens link genome modifications to phenotypes, and have been successfully employed to identify oncogenes, tumor suppressor genes and genes involved in metastasis or therapy resistance. In particular, transposon-based insertional mutagenesis screens and CRISPR-based screens are versatile and easy-to-use tools applied in recent years to discover and identify novel cancer-related mechanisms. Here, we review the contribution of forward genetic screens to our understanding of how EMT is regulated and how it is involved in various aspects of cancer. Based on the current literature, we propose these methods as additional tools to investigate EMT.

Keywords: cancer functional genomics; epithelial–mesenchymal transition; forward genetic screen; insertional mutagenesis screen.

Publication types

  • Review

Grants and funding

This research received no external funding.