The fine-scale cell-free DNA fragmentation patterns in early-stage cancers are poorly understood. We developed a de novo approach to characterize the cell-free DNA fragmentation hotspots from plasma whole-genome sequencing. Hotspots are enriched in open chromatin regions, and, interestingly, 3'end of transposons. Hotspots showed global hypo-fragmentation in early-stage liver cancers and are associated with genes involved in the initiation of hepatocellular carcinoma and associated with cancer stem cells. The hotspots varied across multiple early-stage cancers and demonstrated high performance for the diagnosis and identification of tissue-of-origin in early-stage cancers. We further validated the performance with a small number of independent case-control-matched early-stage cancer samples.
Keywords: Cancer early detection; Cell-free DNA; Fragmentation hotspots; Open chromatin regions; Tissues-of-origin.
© 2022. The Author(s).