Okra [Abelmoschus esculentus (Linn.) Moench], as a well-known medicinal and food plant, has important physiological activities and health benefits, and polysaccharide is its main bioactive component. In this study, a pectic polysaccharide (OPS-50) prepared from fresh okra pods by three-phase partitioning and gradient (NH4)2SO4 precipitation at a saturation of 50% was employed in carbon tetrachloride (CCl4)-caused acute liver damage in mice to evaluate the hepatoprotective potential. Results indicated that OPS-50 was mainly composed of a limited linear homogalacturonan backbone and abundant rhamnogalacturonan-I domains as side chains. OPS-50 exerted positively protective effects on acute liver damage induced by CCl4 in mice through relieving weight reduction and organ damage, ameliorating liver function and dyslipidemia, alleviating oxidative stress, suppressing pro-inflammatory cytokines, modulating gut microbiota, and promoting short-chain fatty acid secretion. Moreover, liver histopathology demonstrated the protective benefit of OPS-50 on CCl4-caused acute liver damage in mice. Therefore, our data suggested that the pectic OPS-50, as a dietary supplement, have great potential in preventing and treating chemical liver damages.
Keywords: Abelmoschus esculentus (Linn.) Moench; Acute liver damage; Gut microbiota; Hepatoprotection; Pectic polysaccharide.
Copyright © 2022 Elsevier Ltd. All rights reserved.