The aim of this research was to prepare a bistratal nanocomplex with a high loading capacity (LC) and harsh environment stability for controlled release of curcumin (Cur) in gastrointestinal conditions. Whey protein isolate (WPI)/short linear glucan (SLG) core-shell nanoparticles were fabricated by self-assembly for the delivery of Cur. The results showed that Cur@WPI@SLG nanoparticles had a relatively high LC (12.89 %) and small particle size (89.4 nm). The nanocomplex remained relatively stable in extreme pH conditions (2-4 and 8-10), high temperatures (60-70 °C), and ionic strength (<400 mM). Core-shell nanostructures facilitated the sustained release of Cur in simulated gastrointestinal conditions. In addition, the nanocomplex had little cytotoxicity at high concentrations, yet significantly enhanced the DPPH scavenging activity and reducing power of Cur. This delivery system will significantly improve the sustained release effect of Cur and broaden the application of hydrophobic nutrients in foods.
Keywords: Antioxidant activity; Bistratal nanocomplex; High loading capacity; Sustained release.
Copyright © 2022 Elsevier Ltd. All rights reserved.