Background: Toxoplasma gondii is known as the most successful parasite, which can regulate the host immune response through a variety of ways to achieve immune escape. We previously reported that a novel gene wx2 of T. gondii may be a virulence-related molecule. The objective of this study was to explore the mechanism of wx2 regulating host immune response.
Methods: The wx2 knockout strain (RHwx2-/- strain) and complementary strain (RHwx2+/+ strain) were constructed by the CRISPR/Cas9 technique, and the virulence of the wx2 gene was detected and changes in pyroptosis-related molecules were observed.
Results: Compared with the wild RH and RHwx2+/+ strain groups, the survival time for mice infected with the RHwx2-/- strain was prolonged to a certain extent. The mRNA levels of pyroptosis-related molecules of caspase-1, NLRP3, and GSDMD and et al. in mouse lymphocytes in vivo and RAW267.4 cells in vitro infected with RHwx2-/- strain increased to different degrees, compared with infected with wild RH strain and RHwx2+/+ strain. As with the mRNA level, the protein level of caspase-1, caspase-1 p20, IL-1β, NLRP3, GSDMD-FL, GSDMD-N, and phosphorylation level of NF-κB (p65) were also significantly increased. These data suggest that wx2 may regulate the host immune response through the pyroptosis pathway. In infected RAW264.7 cells at 48 h post-infection, the levels of Th1-type cytokines of IFN-γ, Th2-type cytokines such as IL-13, Th17-type cytokine of IL-17 in cells infected with RHwx2-/- were significantly higher than those of RH and RHwx2+/+ strains, suggesting that the wx2 may inhibit the host's immune response.
Conclusion: wx2 is a virulence related gene of T. gondii, and may be involved in host immune regulation by inhibiting the pyroptosis pathway.
Keywords: Host immune response; Pyroptosis; Toxoplasma gondii; Virulence; wx2 gene.
© 2022. The Author(s).