It is known that in adult mammals, the heart has lost its regenerative capacity, making heart failure one of the leading causes of death worldwide. Previous research has demonstrated the regenerative ability of the heart of the adult Xenopus tropicalis, an anuran amphibian with a diploid genome and a close evolutionary relationship with mammals. Additionally, studies have shown that following ventricular apex resection, the heart can regenerate without scarring in X. tropicalis. Consequently, these previous results suggest that X. tropicalis is an appropriate alternative vertebrate model for the study of adult heart regeneration. A surgical model of cardiac regeneration in the adult X. tropicalis is presented herein. Briefly, the frogs were anesthetized and fixed; then, a small incision was made with iridectomy scissors, penetrating the skin and pericardium. Gentle pressure was applied to the ventricle, and the apex of the ventricle was then cut out with scissors. Cardiac injury and regeneration were confirmed by histology at 7-30 days post resection (dpr). This protocol established an apical resection model in adult X. tropicalis, which can be employed to elucidate the mechanisms of adult heart regeneration.