A two-step downscaling method for high-scale super-resolution of daily temperature - a case study of Wei River Basin, China

Environ Sci Pollut Res Int. 2023 Mar;30(12):32474-32488. doi: 10.1007/s11356-022-24422-6. Epub 2022 Dec 3.

Abstract

Climate data with high spatial and temporal resolution were of great significance for regional environmental management, such as for early response to possible predicted local climate changes and extreme weather. However, the current downscaling targets for CMIP6 climate simulations were mostly medium-resolution (MR) reanalysis data, which were still coarse for local analysis. A two-step downscaling method was proposed for 100 × resolution enhancements of general circulation model (GCM) daily temperature data in this study. First, the historical GCM outputs were 10 × downscaled to a set of dynamically predictable MR data using a deep convolutional neural network (CNN), which included both encode-decode structure and long-short skip connections. Then, using high-resolution (HR) topographic data and MR climate data as auxiliary data, the GCM data were super-resolved to a series of images with spatial resolution of 1 km. A one-step downscaling analysis combined only with HR topographic data was performed as comparison. Seven evaluation metrics were selected to evaluate the prediction accuracy, and the results showed that the overall performance of two-step downscaling method was better than one-step downscaling method. Higher Nash-Sutcliffe efficiency (NSE) and lower mean absolute relative error (MARE) indicated that the two-step method performed better prediction of peak and low values. It was further confirmed by accuracy evaluation on the 10% max and 10% min values of the testing dataset. The introduction of dynamically predictable MR data could provide effective detailed information during the downscaling process and improve the prediction accuracies. Finally, the projected data of four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2015-2050 were downscaled to the study area. The complex temporal and spatial variations indicated that there were great differences in temperature changes in a basin, and differentiated management measures should be proposed in advance.

Keywords: Climate change; High-scale super-resolution; Projected scenarios; Two-step downscaling; Wei River Basin.

MeSH terms

  • China
  • Climate Change
  • Neural Networks, Computer*
  • Rivers*
  • Temperature