Posttranslational modifications by the ubiquitin-like family (UbL) of proteins determine the biological fate of a substrate, including new interaction partners. In the case of the small ubiquitin-like modifier (SUMO), this is achieved in part through its non-covalent interaction with SUMO-interacting motifs (SIMs) found in some proteins. Investigating such partner-complex formation is particularly challenging due to the fast dynamics and reversibility of SUMO modifications and the low affinity of SUMO-SIM interactions. Here, we present a detailed protocol of SUMO-ID, a technology that merges promiscuous proximity biotinylation by TurboID enzyme and protein-fragment complementation strategy to specifically biotinylate SUMO-dependent interactors of particular substrates. When coupled to streptavidin-affinity purification and mass spectrometry, SUMO-ID efficiently identifies SUMO-dependent interactors of a given protein. The methodology describes all the steps from SUMO-ID cell line generation to LC-MS sample preparation to study SUMO-dependent interactors of a particular protein. The protocol is generic and therefore adaptable to study other UbL-dependent interactors, such as ubiquitin.
Keywords: Biotin; BirA; Proximity proteomics; SUMO; Ubiquitin.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.