Survival Pathways of HIF-Deficient Tumour Cells: TCA Inhibition, Peroxisomal Fatty Acid Oxidation Activation and an AMPK-PGC-1α Hypoxia Sensor

Cells. 2022 Nov 14;11(22):3595. doi: 10.3390/cells11223595.

Abstract

The HIF-1 and HIF-2 (HIF1/2) hypoxia responses are frequently upregulated in cancers, and HIF1/2 inhibitors are being developed as anticancer drugs. How could cancers resist anti-HIF1/2 therapy? We studied metabolic and molecular adaptations of HIF-1β-deficient Hepa-1c4, a hepatoma model lacking HIF1/2 signalling, which mimics a cancer treated by a totally effective anti-HIF1/2 agent. [1,2-13C2]-D-glucose metabolism was measured by SiDMAP metabolic profiling, gene expression by TaqMan, and metabolite concentrations by 1H MRS. HIF-1β-deficient Hepa-1c4 responded to hypoxia by increasing glucose uptake and lactate production. They showed higher glutamate, pyruvate dehydrogenase, citrate shuttle, and malonyl-CoA fluxes than normal Hepa-1 cells, whereas pyruvate carboxylase, TCA, and anaplerotic fluxes decreased. Hypoxic HIF-1β-deficient Hepa-1c4 cells increased expression of PGC-1α, phospho-p38 MAPK, and PPARα, suggesting AMPK pathway activation to survive hypoxia. They had higher intracellular acetate, and secreted more H2O2, suggesting increased peroxisomal fatty acid β-oxidation. Simultaneously increased fatty acid synthesis and degradation would have "wasted" ATP in Hepa-1c4 cells, thus raising the [AMP]:[ATP] ratio, and further contributing to the upregulation of the AMPK pathway. Since these tumour cells can proliferate without the HIF-1/2 pathways, combinations of HIF1/2 inhibitors with PGC-1α or AMPK inhibitors should be explored.

Keywords: 1,2-13C2-labelled glucose; AMP-activated kinase; HIF-1β deficiency; Hepa-1 c4 cells; PGC-1α; PPARα; TCA; fatty acid oxidation; hypoxia response; phospho-p38 MAPK.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases* / metabolism
  • Adenosine Triphosphate / metabolism
  • Cell Hypoxia / physiology
  • Fatty Acids / metabolism
  • Humans
  • Hydrogen Peroxide*
  • Hypoxia / metabolism
  • Hypoxia-Inducible Factor 1 / metabolism

Substances

  • AMP-Activated Protein Kinases
  • Hydrogen Peroxide
  • Hypoxia-Inducible Factor 1
  • Fatty Acids
  • Adenosine Triphosphate