Marburg virus (MARV) is a virus of high human consequence with a case fatality rate of 24-88%. The global health and national security risks posed by Marburg virus disease (MVD) underscore the compelling need for a prophylactic vaccine, but no candidate has yet reached regulatory approval. Here, we evaluate a replication-defective chimpanzee adenovirus type 3 (ChAd3)-vectored MARV Angola glycoprotein (GP)-expressing vaccine against lethal MARV challenge in macaques. The ChAd3 platform has previously been reported to protect against the MARV-related viruses, Ebola virus (EBOV) and Sudan virus (SUDV), and MARV itself in macaques, with immunogenicity demonstrated in macaques and humans. In this study, we present data showing 100% protection against MARV Angola challenge (versus 0% control survival) and associated production of GP-specific IgGs generated by the ChAd3-MARV vaccine following a single dose of 1 × 1011 virus particles prepared in a new clinical formulation buffer designed to enhance product stability. These results are consistent with previously described data using the same vaccine in a different formulation and laboratory, demonstrating the reproducible and robust protective efficacy elicited by this promising vaccine for the prevention of MVD. Additionally, a qualified anti-GP MARV IgG ELISA was developed as a critical pre-requisite for clinical advancement and regulatory approval.
Keywords: Marburg virus; adenovirus; crab-eating macaque; cynomolgus macaque; filovirus; glycoprotein; nonhuman primate; vaccine.