Alcohol use disorder is associated with damaging effects to the brain. This study aimed to examine differences in static and dynamic intrinsic functional connectivity patterns in individuals with a history of alcohol use disorder in comparison to those with no history of alcohol abuse. A total of 55 participants consisting of 23 patients and 32 control individuals underwent neuropsychological assessments and resting-state functional magnetic resonance imaging on a 3 Tesla MRI scanner. Differences in functional connectivity between the two groups were determined using static and dynamic independent component analysis. Differences in static functional connectivity between the two groups were identified in the default mode network, attention network, frontoparietal network, frontal cortical network and cerebellar network. Furthermore, the analyses revealed specific differences in the dynamic temporal characteristics of functional connectivity between the two groups of participants, in a cluster involving key regions in reward, sensorimotor and frontal cortical functional networks, with some connections correlating with the length of sobriety and some others with the severity of drinking. The findings altogether suggest dysregulation in the intrinsic connectivity of cortico-basal ganglia-thalamo-cortical loops that may reflect persistent alcohol use disorder-related network abnormalities, compensatory recovery-related processes whereby additional neural resources are recruited to achieve normal levels of performance, or a predisposition toward developing alcohol use disorder.
Keywords: alcohol use disorder; fMRI; functional connectivity.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.